
WWW.STRV.COM

Resolve & prevent issues before
they threaten your businessCO

NT
IN

UO
US

OP

TIM
IZA

TIO
N

Introduction

Strategy

Case Study

Continuous Optimization

Technology

Legacy Code

Outdated Technology

External Dependencies

Architecture

Bad Project Architecture

Resource Sharing

Setup

CI/CD Setup

Documentation

Tech Debt

Final Note

2

3

5

8

9

11

13

14

16

18

20

22

24

26

28

31

IND
EX

WWW.STRV.COMCONTINUOUS OPTIMIZATION

You’ve gotten a project off the ground. You’ve

navigated the variety of tools available and

know what you’re doing. Maybe you’re already

armed with a successful product and are

looking to keep that competitive technological

edge. But perhaps you’ve noticed a decrease

in velocity when developing new features, and

performance is dropping. Sooner or later,

refactoring becomes imminent. And that tends

to be a bittersweet process. So, how do you

approach it in a sensible way that keeps your

team happy?

On the one side, we have engineers who feel

unproductive as they explore archaic

codebases and dependency integrations.

Some even advocate a complete rewrite as

the only possible action to take before the

whole thing crumbles. Sound familiar?

On the other side, we have stakeholders who

feel that rewriting is a wasted effort. After all,

what is there to stop the new codebase from

following in the steps of the old one and

becoming obsolete in just a few years, or even

months? Not to mention all that money already

spent on building the current solution. With

these common concerns, convincing higher-

ups to allocate money towards a new solution

can prove difficult.

As with everything, the answer is somewhere

in-between. That’s where this guide comes in.

Our ebook acts as a tool to help you identify

common issues, their symptoms, business

impact and tips on how to improve your

current codebase. We achieve this by using

the Continuous Optimization strategy, which is

ideal for feature-oriented products in active

development—and where a complete rewrite

would introduce an excess of duplicity in

keeping both versions up-to-date.

Our ebook acts as a tool to help you identify

common issues, their symptoms and their

business impact, along with tips on how to

improve your current codebase. We achieve

this by using the Continuous Optimization

strategy, which is ideal for feature-oriented

products in active development—and where a

complete rewrite would introduce an excess of

duplicity in keeping both versions up-to-date.

Introduction

2

WWW.STRV.COMCONTINUOUS OPTIMIZATION

3

STRATEGY

There are 4 core aspects of evaluating project

health: Technology, Architecture, Setup and

Tech Debt.

WWW.STRV.COMCONTINUOUS OPTIMIZATION

Every project includes mistakes. The cause

could be hacky code during tight deadlines, a

lack of experience with the given technology

or a malfunctioning crystal ball when

proposing an architecture. Without a proper

tech debt strategy, these untreated problems

snowball into larger issues.

Any given project usually has one or more

issues. They may not pose a problem right now

but, if left unchecked, it may prove

troublesome to resolve those issues once they

start heavily affecting the business.

With proper utilization of Continuous

Optimization and carefully set up processes,

we’re able to resolve problems before they

become a significant threat to your business.

To explain what kind of threats you should aim

to avoid, let’s take a look at a case study that

outlines specific issues and how they can

escalate.

Introduction

STRATEGY 4

WWW.STRV.COMCONTINUOUS OPTIMIZATION

Case Study

This case study (from the book Clean Architecture, by Robert C. Martin) utilizes data from an

anonymous company. It looks at the level of effort needed to meet customers’ needs. If the effort

remains low throughout the system’s lifetime, you’re on the right track.

The first thing to notice is the growth of the engineering staff, compared to the company’s

productivity.

1400

1200

1000

800

600

400

200

0

E
N
G
I
N
E
E
R
I
N
G
 S

T
A
F
F

1 2 3 4 5 6 7 8

Growth of the Engineering Staff

8000

7000

6000

5000

4000

3000

2000

1000

0

P
R
O
D
U
C
T
 S

I
Z
E
 (

K
L
O
C
)

1 2 3 4 5 6 7 8

Productivity

5STRATEGY

WWW.STRV.COMCONTINUOUS OPTIMIZATION

6

You’ll notice that something’s wrong. Although every release coincides with an increasing number of

engineers, the code growth staggers. The next graph shows something even more worrisome.

STRATEGY

350

400

300

250

200

150

100

50

0

C
O
S
T
/
L
O
C

1 2 3 4 5 6 7 8

MAJOR RELEASE

Cost per LOC

WWW.STRV.COMCONTINUOUS OPTIMIZATION

We can see that the cost per line of code has changed over time. All of this isn’t sustainable. No

matter how profitable the company, curves like this will drain profit, driving the company into the

ground.

What caused this change in productivity? Why was the code 40 times more expensive to produce in

release 8 as opposed to release 1? It’s simple. Systems were thrown together without thinking

ahead. The number of engineers was the only driver of output. Clean code and proper design

structure weren’t prioritized.

The following graph shows what the curve looks like to engineers.

7

While the engineers started out at almost 100% productivity, that declined with each release. By the

fourth release, bottoming out in an asymptotic approach to zero became the obvious trajectory.

The thing is, the engineers were still working hard. The effort hasn’t decreased; instead, it’s been

redirected, moving away from features and focused on managing the mess.

Executives feel this on a whole other level, specifically in terms of monthly development payroll—as

seen in the next graph.

100%

75%

50%

25%

0%

1 2 3 4 5 6 7 8

P
R
O
D
U
C
T
 S

I
Z
E
 (

K
L
O
C
)

Productivity/Releases

WWW.STRV.COMCONTINUOUS OPTIMIZATION

STRATEGY

$20M

$15M

$10M

$5M

$0M

1 2 3 4 5 6 7 8

M
O
N
T
H
L
Y
 P

A
Y
R
O
L
L

RELEASE

Cost/Revision

8

Release 1 was delivered with a monthly payroll of a few hundred thousand dollars. The second

release cost a few hundred thousand more. By the eighth release, the monthly payroll was $20

million and climbing.

Compare the curve here with the lines of code written per release in our second graph. The initial

few hundred thousand dollars per month bought a lot of functionality, but the final $20 million

bought almost nothing.

WWW.STRV.COMCONTINUOUS OPTIMIZATION

STRATEGY

Continuous Optimization

This ebook focuses on 4 core aspects of evaluating project health: Technology, Architecture, Setup

and Tech Debt.

It’s important to not only make your project great but keep it great as you move forward. And

although the principles of Continuous Optimization can be applied at any stage of a project, it’s

easiest to incorporate it into the development lifecycle during project planning. By having carefully

set up processes from the start, we’re able to resolve problems before they become a significant

threat to your business.

9

TECHNOLOGY

The main blockers—and primary focus points

—of Continuous Optimization are tight

coupling and untested code.

WWW.STRV.COMCONTINUOUS OPTIMIZATION

Choosing the right technology is a complex

task in theory, yet in practice it boils down to

simply analyzing what’s out there and how it

fits your agenda.

One framework could seem absolutely perfect

for your new project, but if you don’t have

engineers with enough know-how, you might

be better off with the tech stack you already

have expertise in. Or perhaps you’re looking

for, say, an emailing service—in which case,

just pick your favorite and move on. No need

for careful, weeks-long deliberation. Most of

the time, you don’t actually need perfect. You

need good enough.

Sound like we’re setting the bar low? Not at all.

The reason that we don’t want to make a

specific technology the core of our business is

because technologies should function solely

as tools that help us achieve our goals. They

should be easily replaceable once we get

familiar with newer, better tools.

This doesn’t only apply to third-party software.

What actually changes more often is the

functionality within our own codebase

because business needs incessantly evolve.

Which is why we need to structure the code in

such a way that it’s easy to move things

around and recreate whole modules from

scratch if needed.

The main blockers in doing this effectively are

tight coupling and untested code—which are

the primary focus points of Continuous

Optimization.

Introduction

TECHNOLOGY 10

WWW.STRV.COMCONTINUOUS OPTIMIZATION

11

Legacy code is any code you are afraid to

change. That fear could stem from insufficient

test coverage, outdated technology or a

complex dependency relationship between

your modules. Changing it poses a high risk

because it can introduce unforeseen

regression in all code that depends on it.

Oftentimes, this code is maintained by a

handful of individuals who “know how it

works” and any attempts to introduce new

engineers into this circle are accompanied by

frustration and high business risks.

Legacy Code

TECHNOLOGY

Insufficient test coverage (or no tests

at all)

Only a small subset of engineers

knows how to maintain the code

The technology used is outdated

●

●

●

Symptoms

Adding new features or changing

existing features becomes slower

Domain knowledge gets concentrated

into a small group of engineers,

increasing the bus factor

Changes have a high risk of causing

regression across multiple projects

that depend on the legacy code

●

●

●

Business Risks

WWW.STRV.COMCONTINUOUS OPTIMIZATION

12

Adding unit and acceptance tests allows you

to stabilize the existing behavior, which lets

you make your changes with greater

confidence. Creating a solid test setup is the

first step towards tackling legacy code

effectively.

STRV Tip

49% of engineers view tech

debt/legacy code as the

biggest technical barrier for

the companies at which

they work.

TECHNOLOGY

WWW.STRV.COMCONTINUOUS OPTIMIZATION

13

Outdated technology is any functionality that

could be replaced by its modern counterpart.

Keeping outdated tech in the codebase leads

to sluggish development, security

vulnerabilities and overall higher cost per

feature. Using these tools oftentimes hampers

the engineers’ experience, who in turn

become frustrated with slower progress.

Onboarding new people becomes harder as

well because junior engineers may not be

familiar with the technology used and, if it is

niche enough, there may not even be enough

professionals on the market.

External dependencies are not actively

maintained (no LTS)

It is difficult to find people with

expertise in the given technology

The engineer experience suffers, as

tools don’t produce fast and quality

outputs

●

●

●

Symptoms

Older technologies can approach

problems in ways that are incompatible

with modern design principles, forcing

engineers into outdated processes

●

Business Risks

Outdated technology usually has

different priorities or was developed

with different use cases in mind

Older technologies tend to increase

latency for users

Finding sufficient expertise for code

maintenance becomes increasingly

more expensive

Onboarding takes longer and

processes take more time with tools

which are slower compared to their

modern counterparts

●

●

●

●

Outdated Technology

TECHNOLOGY

WWW.STRV.COMCONTINUOUS OPTIMIZATION

14

Externalizing functionality opens up windows

for potential safety breaches and makes code

harder to maintain. Reducing such

dependencies brings more control over code

quality in the long term.

External Dependencies

TECHNOLOGY

Bundle size is bigger than necessary

Heavy reliance on third-party services

●

●

Symptoms

Fixing external dependencies can

prove troublesome, as most of them

are a “black box”

Security issues

Stability problems

Slower migration to different services

●

●

●

●

Business Risks

WWW.STRV.COMCONTINUOUS OPTIMIZATION

15

Isolating external dependencies behind an API

layer gives you greater control over changes.

Regularly keep dependencies up-to-date and

find alternatives for the dependencies which

are no longer maintained, or bring the

functionality in-house if possible.

STRV Tip

Approximately 50% of the time

engineers spend on

maintaining code is actually

spent trying to understand the

code that they are working to

maintain.

TECHNOLOGY

WWW.STRV.COMCONTINUOUS OPTIMIZATION

16

TECTURE
ARCHI-

As a project evolves and adapts to new

business needs, the architecture must

continue leading the way.

WWW.STRV.COMCONTINUOUS OPTIMIZATION

Architecture is a crucial focus point during a

project’s planning stages. When you think of

architecture in terms of buildings, you imagine

it as something that doesn’t change once

construction commences. But when it comes

to engineering, it’s a whole other story.

The main difference is the software

development lifecycle.

As a project evolves and adapts to new

business needs, the architecture must follow

—and not only follow, but lead the way

because all changes need to be reflected in

the updated design. You wouldn’t install a

balcony to a window without adding it to the

blueprints first.

The person or team in charge of the

architecture should partake in the

development process to better understand

project needs. Only then can it be augmented

effectively, as “ivory tower” design often omits

important changes to existing concepts.

Layering the functionality with clear

boundaries focused on core business entities

and use cases provides a clean form of a

plugin-based system that can be enhanced or

replaced easily while limiting unwanted

regression across modules.

Introduction

ARCHITECTURE 17

WWW.STRV.COMCONTINUOUS OPTIMIZATION

18

Good architecture is one that not only works

but is also scalable and maintainable. It

shouldn’t rely on tight coupling with external

services, and it should clearly define

functional layers.

Bad project architecture makes onboarding

difficult and creates a brittle dependency tree.

More importantly, small changes can cause

rippling regression throughout the whole

project.

Bad Project Architecture

Confusing structures make it difficult

to decide where a feature should go

Lack of interface boundaries between

layers

Circular dependencies

Small changes affect multiple parts in

the codebase

Tight coupling between the business

layer and external dependencies

●

●

●

●

●

Symptoms

Onboarding new people takes longer

Functionality has no defined

ownership of behavior, and changes in

dependencies directly affect the

functionality and propagate further in

●

●

Business Risks

the dependency tree

Difficulties with migration to different

services or scaling

●

ARCHITECTURE

WWW.STRV.COMCONTINUOUS OPTIMIZATION

19

Introduce non-circular API layers across

modules for greater control and ownership of

responsibility. Try to move external

dependencies to the outermost layers; by

doing so, you facilitate an easier plugin-based

system where you can easily swap services.

STRV Tip

By 2022, 90% of all new

apps will feature some form

of composable architecture

that improves the ability to

design, debug, update and

leverage third-party code.

ARCHITECTURE

WWW.STRV.COMCONTINUOUS OPTIMIZATION

20

Code reuse is an important thing to get right in

a project to prevent duplicity issues down the

road. A good setup allows multiple codebases

to effectively share functionality across

projects, and it reduces the chance that

updating one resource will negatively affect

another. As shared resources are inherently

coupled, it’s important to strike the proper

balance between ease of use and modularity.

Duplicate business logic across

projects

Increased bundle size

Rigid external dependencies require

workarounds to implement properly

●

●

●

Symptoms

Updating business logic becomes

error-prone or inefficient

Duplicate implementations tend to

increase latency for users

Codebases become larger and harder

to maintain, increasing the cost-per-

line of code

●

●

●

Business Risks

Resource Sharing

ARCHITECTURE

WWW.STRV.COMCONTINUOUS OPTIMIZATION

21

Decouple frequently used functionality into a

separate module, ideally based on business

logic. However, make sure there is clear

ownership of the module and that it can be

iterated on efficiently as it becomes a tightly

coupled dependency.

STRV Tip

In 2015, Hitachi Consulting

commissioned a study that

found legacy systems were

holding back 90% of

businesses.

ARCHITECTURE

WWW.STRV.COMCONTINUOUS OPTIMIZATION

22

SETUP

Up-to-date documentation greatly simplifies

the workflow, so introducing helpful systems

becomes invaluable as a project grows.

WWW.STRV.COMCONTINUOUS OPTIMIZATION

Project setup is one of the most important

aspects of any project. A high-quality setup

could relieve many headaches down the road.

Due to this, it’s best to use common design

patterns because they simplify onboarding

onto the project.

It’s crucial to include code quality tools to

prevent code decay and to maintain the high

integrity of code style throughout the

codebase. These checks can be easily

automated in the CI/CD pipeline, along with

other tools used to optimize the condition of

the project.

Additionally, it’s best to remove as much of the

human element as possible from repeating

processes in order to avoid oversight

mistakes. Great contenders for this are

infrastructure—ideally defined in the

codebase via configuration files—and

deployment.

An oftentimes overlooked aspect assumed to

be of lesser importance is documentation. Up-

to-date documentation greatly simplifies the

workflow for anyone who needs to interact

with the project as a whole or with its various

parts, so introducing helpful systems becomes

invaluable as a project grows.

Keep in mind that documentation isn’t only

readmes, but architectural diagrams,

comments or version system commits, all of

which should conform to the agreed-upon

format.

Introduction

SETUP 23

WWW.STRV.COMCONTINUOUS OPTIMIZATION

24

Continuous Integration (CI) and Continuous

Deployment (CD) should be a part of every

production-grade project. Their primary

purpose is to delegate various checks to

automated services instead of relying on

human checks.

CI/CD Setup

Inconsistent codebase style

Reappearing bugs

Deployment failures

Recurring “broken pipeline” blockers

●

●

●

●

Symptoms

A lot of time spent on maintenance and

infrastructure bug fixing

An increased amount of bugs

Slower deployment cycles

●

●

●

Business Risks

SETUP

WWW.STRV.COMCONTINUOUS OPTIMIZATION

25

A healthy CI/CD setup should not only handle

automated deployments but should also

guarantee the codebase quality, ensuring that

the code is properly formatted and tested

before reaching production.

STRV Tip

Maintenance consumes

over 70% of the total life-

cycle cost of a software

project.

SETUP

WWW.STRV.COMCONTINUOUS OPTIMIZATION

26

Documentation helps with onboarding and

increases the usability factor of any project.

Keeping it in a well-maintained condition can

reap considerable benefits. The most relevant

docs include project readme, architecture

diagrams, usage of third-party services and

public-facing API documentation.

Documentation

Architectural patterns are not clearly

defined

Difficulty finding appropriate resources

If not properly maintained, can falsely

describe the actual implementation

Difficulty tracking changes

●

●

●

●

Symptoms

Onboarding new people takes longer

Increased tech debt

If the product is public-facing API, it

critically downgrades the adoption rate

●

●

●

Business Risks

SETUP

WWW.STRV.COMCONTINUOUS OPTIMIZATION

27

Document new features by including either a

readme, comments or through a separate

service. Implement mechanisms that ensure

fresh state of the documentation, like properly

formatted commits which can be compiled

into a rigorous changelog and allow automated

versioning of the system.

STRV Tip

SETUP

Effective CI/CD setup is the No.

1 way of eliminating the human

factor in faulty deployments.

WWW.STRV.COMCONTINUOUS OPTIMIZATION

28

TECH DEBT

Tech debt is generally divided into two primary

categories—deliberate and accidental—and

stems from sacrificing quality over speed.

WWW.STRV.COMCONTINUOUS OPTIMIZATION

Tech debt comes from sacrificing quality over

speed. Like financial debt, it can be useful in

the short term but can easily rack up interest if

not properly maintained. Harder code

maintenance, slow iteration times and

reappearing bugs are just a few critical issues

that stem from an inefficient tech debt

mitigation strategy.

Tech debt can arise for multiple reasons, but

we generally classify it using two primary

categories: deliberate and accidental.

Deliberate tech debt happens when engineers

sacrifice quality over speed. It’s fine in small

amounts but should be recorded into the

backlog and dealt with ASAP.

Accidental tech debt is acquired over time. It

can be somewhat reduced by diligently

upholding the code quality and architectural

consistency; however, some tech debt will still

accumulate. It’s crucial to allocate time in the

backlog to identify and deal with it properly.

Introduction

TECH DEBT 29

WWW.STRV.COMCONTINUOUS OPTIMIZATION

30

As Tech Debt is something for which we can

plan, it’s important to devise an early

mitigation strategy based on expected project

velocity. One of the most popular approaches

is dedicating a sprint to fix identified issues. A

second option is including a task focused on

resolving the debt in every sprint.

Make sure the tasks in the backlog don’t get

buried by an onslaught of feature-focused

tasks. Ensure that the team sees them as a

priority, as it’s the engineers who know the

exact level of tech debt.

STRV Tip

TECH DEBT

The cost of buggy software

in the U.S. totaled $2.26

trillion in 2018. That number

did not include the cost of

future tech debt. This data

indicates why software

developers spend 42% of

their time fixing bugs, and

why 80% of IT budgets go

toward doing so.

WWW.STRV.COMCONTINUOUS OPTIMIZATION

Final Note

31

We’ve said every project includes mistakes,

and it’s true. Being smart doesn’t mean

fighting for a miracle by aiming for zero

mistakes. Being smart means preventing as

many issues as you can and fixing what’s

already been busted before it leaves a mark.

Continuous Optimization is now less of a

choice and more of a necessity. In the ever-

evolving world of software development, it’s

all about having the right processes, the right

realistic outlook and, yes, the right people on

the job.

The STRV team is here for you if you want to

discuss how we can help out. The foundation

of this ebook came from our senior engineers,

who wrote it simply because they wanted to

share with others what they themselves took

years to learn. So if you’re looking for know-

how and genuine enthusiasm, that we can

guarantee.

THIS EBOOK WAS LAST UPDATED ON AUGUST 10TH 2020.

COPYRIGHT © 2020 STRV

AUTHOR: PETER VARHOLAK
EDITOR-IN-CHIEF: LINDA KRESTANOVA
DESIGN: LENKA SIVA

WWW.STRV.COMCONTINUOUS OPTIMIZATION

https://www.strv.com/contact

	Cover
	Index
	Intro
	ST-1
	ST-2
	ST-3
	ST-4
	ST-5
	ST-6
	T-1
	T-2
	T-3
	T-4
	T-5
	T-6
	T-7
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	S-1
	S-2
	S-3
	S-4
	S-5
	S-6
	TD-1
	TD-2
	TD-3
	Outro

